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Mass, momentum and energy flux in water waves 

By G. B. WHITHAM 
Mathematics Department, Massachusetts Institute of Technology 

(Received 20 March 1961) 

This paper gives a direct derivation of some results obtained by Longuet- 
Higgins & Stewart (1960,1961) on the amplitude variation of waves propagating 
on a non-uniform stream. The derivation raises a number of subtle points in 
the use of the equations of conservation of mass, momentum and energy. These 
points are of general interest and are discussed in detail with other applications, 
since they do not seem to have been pointed out previously. 

1. Introduction 
Longuet-Higgins & Stewart (1960, 1961) use a perturbation analysis to find 

solutions for waves propagating on a given non-uniform stream. The results 
for the amplitude variations in terms of the changes in stream velocity are found 
to  satisfy a simple energy-balance equation. However, only certain of the con- 
ceivable terms appear in this relation, and it is noted that earlier writers have 
often included the wrong ones in trying to write it down directly. The authors 
give further discussion of the difficulty of deciding between the various terms and 
conclude that no unique answer is given by physical intuition. 

Now, it is true that further information is needed, but the corresponding 
Conservation equations for momentum and mass suffice. The required result 
can be obtained from the full set of conservation equations in a straightforward 
way and without appeal to any deep intuition. However, some change of inter- 
pretation and viewpoint is involved. 

When the conservation equations were studied in this connexion, a number of 
points which are easily overlooked were noticed. (In fact several mistakes were 
made at first !) It seemed, therefore, that a careful derivation and examination 
of the conservation equations would be of general use, since the standard refer- 
ences on water waves do not seem to have a full account. This is given first in 
$9 2 and 3, with illustrative examples in $9 4 and 5, before going on to the results 
for non-uniform currents and streams in 9 6. 

Longuet-Higgins & Stewart (1960) show that the energy flux for waves of 
amplitude a moving along a main stream whose ‘mass transport velocity’ is 
Urn (the distinction between the various definitions of main-stream velocities is 
noted later) is given by 

#phU% + Urns + (Urn + cJ E ,  (1) 

where E = +pga2, (2) 
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Here, c and cg are the phase and group velocities for waves moving into fluid at 
rest, h is the mean depth, p is the density and g is the acceleration of gravity. 
For a non-uniform stream Um(z), it is found that the amplitude variation is given 
correctly by the relation 

d 
- { ( u m + c g ) E } + S S  ax ax = 0. (4) 

The above authors interpret the first term in (1) as main stream energy and the 
third term as the usual propagation of wave energy, density E,  with group velocity 
Um+cg. The quantity S is called the radiation stress and the term UmS in (1) 
is interpreted as the work done by the current Urn against the radiation stress of 
the waves. Discussion then centres around why only part of the change 
a( UmS)/dz appears in (4). 

It seems to the present writer that the difficulties are due to trying to divide 
(1) into ‘main stream energy’ and ‘wave energy’. In  this problem Urn depends 
on the amplitude of the waves so that the first term of (1) can not be dismissed 
simply as main-stream energy. Also UmS can not really be counted as a contribu- 
tion to wave energy because the group velocity (wave-energy flux divided by 
wave-energy density) must certainly be Urn + cg not U,(S/E) + Urn + cg. It is true 
that in simpler cases one can usually make the division into main stream and 
wave energy in a straightforward way. But this division is just equivalent to 
subtracting a multiple of the momentum equation from the full energy equation 
to leave only ‘wave energy’. In  a complicated case one can write down the full 
energy and momentum equations and take suitable combinations. With this 
point of view (4) can easily be derived. In  fact, it  turns out that it is the main 
stream terms that require special care, not the UmS term. S is just the principal 
term in the momentum flux. 

Perhaps these arguments are seen most convincingly by looking at a roughly 
analogous situation for the dynamics of a system of particles. For particles of 
mass m and velocity v, with forces F, we have the momentum and energy 
relations 

d 
Cmir = CF, X&mv2 = CF. v. 

If v = U + u, the energy relation becomes 

and the analogy between the left-hand side and (1) is immediate. But, if U is 
constant, a suitable multiple of the momentum equation is subtracted to give 

-{L$mu2} d = CF.u, 
at 

which is the energy equation for an observer moving with velocity U. Suppose 
next that U is a function of time. Then, taking the scalar product of U with 
the momentum equation, we have 
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Subtracting this from (5), we obtain 

a dU 
- {@mu2) + (Xmu). - = X F .  u. dt at 

The left-hand side is directly analogous to (4). This shows that correctly viewed 
the water wave results are not surprising. For a moving system, a multiple of 
the momentum always appears in the energy equation (as in (1) and ( 5 ) ) ,  and for 
an accelerated motion the typical momentum multiplied by the acceleration 
appears (as in ( 4 )  and (6)). It is true that the extra term in (8) can be called part 
of the rate of working by the ‘radiation stress’ Xmu, but it is more familiar as 
the rate of working by the ‘fictitious forces’, -mdU/dt,  of the accelerated 
system. 

2. Stokes’s waves to second order for water of finite depth 
The quantities appearing in the equations of conservation of mass, momentum 

and energy involve terms of the second order in the amplitude. For many 
purposes the required manipulation of these equations can be done before 
evaluating the various integrals in terms of a, and in the final form the linear 
theory suffices even though the quantities concerned are O(a2). This is true, for 
example, for the energy equation for waves moving into water at  rest, but not 
for the momentum equation. In  all cases, it is reassuring to have expressions 
for all the flow quantities to order a2. These are provided by Stokes’s expansions 
in powers of a for periodic waves. 

For two-dimensional flow, the velocity potential @(z, y, t )  satisfies Laplace’s 
equation and the pressure p is given by Bernoulli’s equation 

where y is measured vertically upwards and B(t) is an arbitrary function of t .  
One usually says that B ( t )  can be absorbed into @ and then forgets about it. 
Here it is important. In  this problem a certain term A ,  proportional to a2 (see 
(15) below), has to appear in one of three places: (i) on the right of (9), (ii) in @ 
as a term proportional to t ,  or (iii) as the difference between y = 0 and the mean 
position of the surface. On the whole it seems to be most convenient to have it 
in @, even at  the expense of losing the periodicity of @. In fact a casual assump- 
tion of the periodicity of @ is the easiest way of getting (1)  wrong. Accordingly 
then, B ( t )  is set equal to zero, the average elevation is taken to be y = 0 and a 
term proportional to t is included in 0. Without any loss, we can take p = 0 at 
the surface. 

The boundary conditions on @ are 

and 



138 G. B. Whitham 

y = ~ ( x ,  t) is the elevation of the surface and the depth h is taken to be constant 
Then, the general periodic solution correct to terms in az is 

q = a cos (kx - at)  + a2pl cos 2(kx - wt), 
@ = U x - ( i U 2 + A ) t + $ ,  

aw, cosh k(y + h) 
$ = -  sin (kx - wt )  + a2p2 cosh 2k(y + h) sin 2(kx k sinhkh 

where w = Uk + wo, 

c2=$=gtanhkh,  W2 c g = L = + c  dw 1 +  

E cg 1 

wg = gk tanh kh, 

k dk ( sinh 2kh 

2sinh2kha -ph(c  2 ) ,  
A = - -  g k  2 - -  _ _ _  and 

3 
Yl = ik 'Oth kh(l + 2 sinh2 kh) 

I 3 wo 
I%=------- 8 sinh4 kh . 

The quantity A is the only second-order term that will be needed. Notice that it 
vanishes in the case of deep-water waves since cg = Qc. 

The pressure is given by 

E? = A - $ l -  U$,-&(V$)2-gy. 
P 

Hence, the mean value (averaged over a period) is 

= - g y - a 2 - ; - - - - -  gk sinh2 k(y + h). (18) sinh 2kh 

The velocity U in the solution (13) is the mean value of the %-velocity, i.e. 
- 

u = CD,, 

and it is very important to distinguish this from the mass transport velocity U, 
defined such that the mean mass flux across a vertical section is phU,. It should 
also be noted that U and h may themselves depend on a and k in certain pro- 
blems; they may differ from the undisturbed values by terms of order a2. Ex- 
amples are given in $9 4 and 5. The only term affected is the Ux - &U2t term in @; 
elsewhere in the formulae (12)-(16), the undisturbed values can be used since 
the error is O(a3). Finally, the usual restrictions on the parameter ranges for 
Stokes's waves to apply should be borne in mind. In  particular, for long waves 
the condition is that a/h should be less than a certain multiple of (kh)2. 

3. Mass, momentum, energy 
The equations for the conservation of mass, momentum and energy can be 

written down directly or established from V2@ = 0 and the boundary conditions 
(10) and (1 1). They take the form 

ap aQ 
at ax -+- = 0, 
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where P, Q are given by the following integrals. 

(i) Mass: 

(ii) Momentum : 

Qz = lq { P + ~ P (  V a l 2  + P d Y  + H ) }  @ d Y .  (23) 
-h 

The potential energy is measured from y = - H .  We have already defined y = 0 
to  be the mean level of the surface and this may be at  different heights in different 
regions (for example, on the two sides of an obstacle in the surface). Therefore, 
an arbitrary level y = - H  is chosen for the potential energy rather than y = 0. 

We now calculate the mean values of the above integrals from the formulae 
of Q 2. It should be noted that ?j = 0, and $ and all its derivatives have zero mean 
values. Evaluations like the following are used repeatedly: 

Mass : 
We have 

from (12), (13), (14); as before E = ipga2. Although QZ oscillates about U ,  
there is greater depth at  the higher velocities and consequently the mass flux 
is greater than pUh. The ‘mass transport velocity’ Urn is defined by 

a 0  E urn = = = u+-. 
P” PhC 

Momentum : 

and, from (17), 
We have PI = & , = p U h + E / c  =phU,, 
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Using the formulae ( l a ) - (  16) )  we obtain 
E 0, = phU2 + +pgh2 + ; (2U + 2c, - =&) 

to second order. 

Energy : 
We have 

F2 = &phU2+pgh(H-+h)+E(1 + Ufc) 

= &phU& +pgh(H - +h) + E. 

When the expression (17) for p is substituted in (23) ,  we have simply 

Q2lp = S9 -h ( ~ U ’ + g H + A - # ~ } ( U + # ~ ) d y ,  

= phU(3U2 + gH)  + (Efc) {$U2 + gH + U(  2c, - &) + C (  U + c,)} 
= $Urn( + Uk + gH) + U, E ( ( ~ c , / c )  - +} + E( urn + c,). (33) 

It should be noted that in all the above calculations, A is the only second-order 
quantity needed; otherwise it is sufficient to know & = 3, = 0, etc. 

The various expressions are collected in the following table: 

Density P Flux Q 

( 0 )  Mass Ph phU, = ph( U + E/pch) 

(2) Energy ph{+Uk+g(f f - ih) l+E PhUm{+Uk+gff)+ U , E ( ( ~ C , / ~ ) - - ) + E ( U ~ + C , )  

The above results can be combined to give 

(1) Momentum Ph urn PhU;+4PghZ +E{(%Ic) - $1 

F3 F 2 - U r n P l + { ~ U ~ - g ( H - ~ h ) } ~ 0  = E,  (34 )  

8 3  &z-urn8,+(+U,,-g(H-+h)}8, = E(U,+c,). (35) 

These quantities could be called the density and flux of ‘excess energy’ or 
‘wave energy’. For the uniform flow considered so far, all the quantities are 
constants and, for example, constant energy flux can be expressed equally well 
as total energy Q, = constant or wave energy Q3 = constant. However, applica- 
tions are to problems where (i) the flow conditions and wave properties vary 
slowly over distances and times large compared with the wavelength and period, 
or (ii) a number of different regions of uniform flow occur. In  the former case, 
( 1 9 )  is used for the mean quantities, i.e. 

aFi ag. 
- +-z = 0 (i = 0 , 1 , 2 ) .  
at ax 
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But, i t  is obvious that the ‘wave energy’ quantities p3, a, do not satisfy this 
conservation equation in general, because the coefficients Urn, {+U& - g(H - ih )}  
will not be constant. Hence, additional terms such as the last one in (4) are to 
be expected. A similar comment applies to problems in which different uniform 
regions are connected in some way, as in propagation over a step or past an 
obstacle. In  such problems the discontinuity conditions or ‘shock conditions ’ 
corresponding to (36) are used. In  all cases, the recommended procedure is to 
use the equations (36) for the total quantities and then take suitable combina- 
tions to simplify. 

It should be noted that the mean quantities in (36) involve four basic variables 
Urn, h, k, E.  To complete the system of equations we add the kinematic equation 

ak aw 
at ax -+- = 0. (371 

In  the applications to non-uniform flows, k and o vary with x and t, and (39) 
expresses the conservation of waves. (Alternatively if the phase is 8(x,t), 
w = -aO/at, k = aB/ax; therefore (37) follows.) The four equations in (36) and 
(37), or equivalent ones, are the tools used in solving the problems in the next 
sections. It is interesting to note that these form a hyperbolic system for the 
propagation of important physical quantities as opposed to Laplace’s equation 
for the full details of the flow. We return to this question in Q 7. 

One of the main points of this paper is that Urn (or equivalently U )  and h 
have to be treated as unknowns, as the next sections show. 

4. Propagation over a smooth step 
In  this section and the next, two standard examples are noted to illustrate 

points in using the conservation equations. First, consider an initially uniform 
wave train passing over a ‘smooth’ step, i.e. a gradual change in depth between 
two uniform regions. The problem is to determine the transmitted wave train 
in terms of the incident one. If the change in depth is sufficiently gradual (i.e. 
changes in depth take place over length scales much greater than typical wave- 
lengths), it may be assumed that the reflected energy is negligible. 

The purpose of this example is to show that the mean velocity U has to be 
considered with care. Suppose we consider the case in which the fluid was 
initially at rest before the arrival of the wave train. Then, arguing naively, we 
might perhaps say: (i) U can be set equal to zero throughout, (ii) the frequency 
is constant so that the change in wave number is given by 

(38) 

where subscripts 1 and 3 refer to the incident and transmitted waves, (iii) the 
energy flux is the same on the two sides so that the amplitude change is given by 

(gk tanh kh), = (gk tanh kh),, 

(Ec,), = (Ec,),. (39) 

The answers (38) and (39) are in fact correct, but some questions arise if we look 
a little further. If U = 0, there is a mass transport E/c in each wave; hence, 
presumably (El41 = (E/c)2, (40) 
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to conserve mass. But this contradicts (39), and we have the problem of finding 
which one is correct. 

The error is in the casual assumption that U = 0 everywhere. We are cer- 
tainly at liberty to prescribe that U = 0 in the incident wave, but the trans- 
mitted wave has to be determined and we must allow U2 + 0. Then (40) becomes 

(Elc), = (E/c)2 +Ph2 u2, (41) 

and actually determines the unknown mean velocity U2 required to balance the 
incident mms transport. U2 is second order in the amplitude and does not 
modify (38) or (39) to the order of approximation being used. The additional 
terms in the energy flux are all O(E2), since Urn = O(E)  and any change in the 
height h of the mean surface above the horizontal level will be O(E). 

The moral is that the mean velocity Ucan not be prescribed in advance as one 
might expect. The same applies to the mean depth h, as will be seen in the next 
example; variations O(a2) must be allowed. Of course in (38) and in all the 
formulae in (14), this change in h is negligible and h can be taken there as the 
undisturbed depth. 

The kinematic condition (38), corresponding to (37), and two of the con- 
servation equations (36) were used above. The third conservation equation, the 
momentum flux, gives the force on the step. 

5. Obstacle in a steady stream 
Another similar example concerns the wave train produced by a two-dimen- 

sional obstacle in the surface of a steady stream. Only gravity waves are con- 
sidered and they are formed downstream of the obstacle. The mean undisturbed 
velocity Uo and depth h, upstream of the obstacle can be prescribed, but the 
downstream values U and h can not. They differ from the upstream values by 
terms proportional to E .  The flow pattern is assumed to be steady;i hence, the 
frequency o = wo - Uk = 0 and we have c(k) = U .  Consistent with the approxi- 
mations adopted, U can be replaced by Uo in this relation. Thus k is determined by 

c (k )  = u,. (42) 

Again, this corresponds to the kinematic relation (37). 
The relations for the flux of mass, momentum and energy give: 

Mass : 
Momentum : 

Ph U; + *P9h2 + E{(2cg/c) - +} + R = Poho u: + 3Pgh:’ (44) 

(45) 

Energy : 

i p h  uh + pgh2Um + UmE{ ( 2cg/c) - +)} + E( Urn - c,) = Qpho ui + PghiUO. 

Here R is the ‘wave resistance’ experienced by the obstacle. Also H is taken 
equal to h in the energy flux formula, since the bottom is horizontal. 

t In the formulae of the previous sections, U and U,,, were reckoned positive in the 
direction of wave propagation. For this application, the directions are opposite so - U 
and - U ,  are subsbituted to get the formulae given below. 
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Solving these relations correct to order E ,  we find 

RU, = E(U,-c,). (46) 

This is the usual formula for wave resistance and is more easily deduced directly 
(see Lamb 1932, Art. 249) by applying the energy argument in the frame of 
reference in which the obstacle moves with velocity U, into fluid at rest. The 
left-hand side is the work done in moving the obstacle and the right-hand side 
is the rate of gain of energy in the wave train. In  that derivation, the change in 
mean velocity and mean depth need not be considered. It is interesting to note, 
that the mass and momentum equations do not give further information about 
the wave resistance, but serve to determine the small changes in U and h. This 
example also serves as a warning; all kinds of spurious results can be deduced 
if U and h are mistakenly taken equal to U, and h,. In  the present case, (43) 
and (45) would give E = 0, i.e. no waves, and (44) would give an erroneous 
answer for R. 

6. Waves on non-uniform streams and currents 
Here the problems discussed by Longuet-Higgins & Stewart are reconsidered 

and their results derived directly from the conservation laws. We consider waves 
propagating along a prescribed steady current. The current is specified by giving 
the velocity and depth. We must distinguish between the undisturbed velocity 
U,(x) before the waves are present, the mean velocity U(x)  with the wave train 
and the mass flow velocity U,(x). Presumably any one of these could be measured 
and prescribed. They differ from each other by terms O(a2), and, in view of the 
warnings of the last two sections, we must allow U to differ from U,. Likewise 
the undisturbed depth h,(x) without the waves must be distinguished from the 
mean depth h(x) with the waves. The depth and velocity are not independent, 
since the pressure must vanish at the surface; for example 

&Ui(z) -t gh,(x) = constant. 

The change in velocity with x must be adjusted by inflow and we consider: 
(i) inflow from below, (ii) inflow from the sides. 

(i) Current f e d  from below 

The fluid entering the current across the lower boundary y = - h is assumed to 
have a horizontal velocity U*. Probably the appropriate assumption here is 
that U* is equal to the mean velocity U .  However, the same result is obtained 
for any U* which differs from U by terms of order E.  So we can include, for 
example, the possibilities U* = U, or U* = U, at the same time. 

The change in mass flux between the sections x and 2 + 8x is 8(phU,) and this 
must be the inflow into the section from below. Thus the vertical inflow velocity 
is V = d(hU,)/dx. We next obtain the expressions for the change in momentum 
and energy between the sections x and x + 6 x .  The momentum added by the 
inflow is U*S(phU,); hence the equation for momentum balance becomes 

(47) s{phU: + &pgh2+ S] = U*G(phU,), 
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where S is the 'excess momentum flux' 

s = E{(Zc,/c) - p}. (48) 

The kinetic energy carried in from the fluid belowt is gU*2S(phUm); the potential 
energy is zero because the choice H = h makes the bottom of the current the 
zero level for potential energy. The work done against the mean pressure pgh 
in introducing the fluid is pghS( Urn h). Therefore the equation for energy balance 
becomes 

(49) S{$phU& + pgh2Um + Urn S + E( Urn + c,)} = (i 77"' + gh) G(phU,). 

S{B( Urn + c,)} + XSU, = +( U" - Urn)' S(phU,). 

Now we take Urn times (47) away from (49) to get 

(50)  

Since we are assuming that the various U's differ by terms of order E,  the right- 
hand side can be neglected; also, Urn can be approximated by U in the terms on 
the left. Then 

d dU 
ax ax 
-{E(U+c,))+S- = 0. 

Equally well U could now be replaced by U, since the error would again be O(E2). 
The relation (51) is the result obtained by Longuet-Higgins & Stewart after 
detailed analysis of the full solution. 

The equation for changes in wave-number comes from Q = constant, i.e. 

(52 )  
d 
- { Uk + (gk tanh kh)*) = 0; 
ax 

then (51) determines the change in amplitude. 

(ii) Current fed from the sides 

Consider the same problem of a non-uniform stream U ( x ) ,  but this time with 
finite breadth b and with inflow on the sides to balance the changes in mean 
flow. Between two sect'ions x, x + Sx the mass inflow is bS(phU,). We assume that 
the inflow is uniform with depth, i.e. the inflow velocity is 

- W = bh-ld(hti,)/dx (53) 

independent of y, and that a t  any depth the incoming fluid has the momentum 
and energy of the fluid in the current at that depth. (Other assumptions could 
be appropriate but this is the case considered by Longuet-Higgins & Stewart.) 

The x-momentum added by the inflow is 

- WSx]yhp(U+q5,)dy = -phUmWSx. 

The energy added is 
(54) 

7 The contribution +V2 to the kinetic energy is second order in dU*/dx and may be 
neglected. 
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__- 
and the work done by the pressure is 

- wGxJIhpay. 

Thus the total contribution to the energy change is 

= - WGx/:h{pgh+A++U2-pq5t}dy 

= - wGx((Pgh + A + &U2> h -PrCq5tl,=o} 
= - WGx{&ph.Uk +pgh2+ E[(c,/c) - 41 + E). (55) 

(56) 

The momentum equation for the current is 

bG(phUK + +pgh2 + X} = - phU, W Gx, 

and the energy equation is 

bG{+phUL +pgh2Um + Urns + E( Urn + c,)> = - {&phU$ +pgh2 + T + E}  Wax, (57) 

where T E{(c,/c) - &}. (58) 

We now take Urn times (56) away from (57) to give 

6(E( Urn + c,)} + XSU, + (E  + T )  b-l W Gx 

= -p(gh-~Uk)(hWb-'Sx+6(h~,)) .  (59) 

The right-hand side is zero, by (53); hence we have 

Since Urn and h depend on x only, W would increase linearly with z across the 
current and Wlb can be replaced by dW/dz. Also, E is independent of z, so we 

d ( E W )  dU, dW 
+S--+T- = 0. 

a can write 

- ax {E(Um + c,)} + 7 ax az 

The first two terms are the divergence of the simple energy flux vector with com- 
ponents E( Urn + c,), E W ;  the last two terms give the modification due to the non- 
uniform stream. Equation (61) is the form given by Longuet-Higgins & Stewart. 

When (53)  is substituted in (60), we have 

Since all the terms are now proportional to E,  U, can be replaced by U or U, 
and h by h,, to the same order of approximation. The variation of k is again 
given by (52 ) .  

In  both cases, it seems clear that the results will be modified if different assump- 
tions are made as to the energy and momentum of the incoming fluid. For 
example, it  might be appropriate to assume that the fluid added to the current 
from the sides has just the mean flow energy &gh + &U2 per unit mass. 

10 Fluid Mecli. 1-0 
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7. Propagation of changes in mass, momentum, energy and wave- 
number 

We now consider the question, raised at the end of 0 3, of the wave propagation 
specified by equations (36) and (37). As the previous examples show, Urn, h, k, E 
should be considered as the basic variables determined by these equations. The 
previous sections have concerned time-independent solutions for these quan- 
tities. We now consider time-dependent propagation. 

The equations are 
ah a 
-- + - (hum) = 0, at ax 

ak a@ 
at ax 
-+- = o .  

The simplest case is to assume that the water is initially undisturbed and of 
uniform depth h,. This means that Urn and h - ho are due entirely to the wave 
motion and are both O(E).  Then, linearizing the above equations to first order - 

ah au, - 
- + h  - - 0 ,  at O ax 

au, ah as 
h -+gho-+-  = 0, 

0 at ax ax 

aE aE 
- + c  - = 0, 
at g a x  

ak arc 
at + c  - = 0. 

oax  

in E and in changes in k; we have 

- 

The last equation is completely uncoupled in this linearized set, and shows that 
changes in k propagate with the group velocity cg. The third equation shows that 
energy changes also propagate with the group velocity, as we would expect. The 
momentum 8 is simply proportional to E so we have 

s =f1(x-c0t). (68) 

Then the general solution of the first two equations in (67) is 

1 
gh,-C: h-h,  = -~ f (x  - cot) + f A X  - [ghol$ t )  +f3@ + Cgholt t) ,  (69) 

C 
u, = ---L- gh,-c: f ( x  - + ( g / h 0 ) f f 2 ( x  - [ghOl' t, - (g/h0)*f3(x + [ghOlf t ) .  

(70) 

The additional wave speeds ~f: (gh,)t are the speeds for shallow-water waves, and 
thef2 andf, terms are exactly the same as in shallow-water theory. But the 
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additional terms fi, proportional to the energy, appear due to the coupling 
through the aslax term in the second equation of (67). More generally we may note 
that (63) and (64) are exactly the non-linear shallow-water equations with the 
additional momentum term aslax. Since the length scale for changes in Urn and 
h was assumed to be large compared with the wavelength 27r/k, it  is not surprising 
that direct changes in these quantities propagate with the long-wave speeds 
& (gh,)). However, the more interesting results are the changes in h and Urn 
accompanying the amplitude changes. 

This type of propagation seems to be worth exploring further but needs a fuller 
investigation of the quantities E, a*, k, w and their dependence on Urn, h, k, a. 
For example, it would be inconsistent to retain the non-linear terms in (63)-(66) 
for this problem, since they are O(E2) and the densities and fluxes were not 
calculated to this order. Again, if terms in a3 are included in the Stokes waves, 
o is found to depend on a2. This must also be included in a more accurate discus- 
sion; it may introduce interesting effects in coupling the equation for wave- 
number with the other equations. Such investigations go beyond the scope of 
the present paper. 

This research was supported by the U.S. Air Force under Contract AF 49(638)- 
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